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(2) ·q = JYI-1Q = a(q, q, t). 

where the n x n matrix M is symmetric and positive definite. The generalized 
accelerations of the unconstrained system, which we denote by a, are thus given by 

(1) M(q, t) q = Q(q, q, t), 

The principles of analytical mechanics laid down by D'Alembert, Lagrange (1787) 
and Gauss (1829) are all-encompassing, and therefore it naturally follows that there 
cannot be a new fundamental principle for the theory of motion and equilibrium of 
discrete, dynamical systems. Despite this, additional perspectives may yet be useful 
in understanding Nature's laws from new points of view, in particular if they can help 
in solving problems of special importance, and in providing deeper insights into the 
way Nature works. 

While the general problem of constrained motion was formulated at least as far 
back as Lagrange, the determination of the explicit equations of motion for 
constrained, discrete dynamical systems, even within the restricted perview of 
langrangian mechanics, has been a major hurdle. The Lagrange multiplier method 
relies on problem-specific approaches to the determination of the multipliers; it is 
often very difficult to obtain them and hence to obtain the explicit equations of 
motion (both analytically and computationally) for systems which have a large 
number of degrees of freedom and many non-integrable constraints. Formulations 
offered by Gibbs, Volterra, Appell, and Boltzmann require a felicitous choice of 
problem-specific quasi-coordinates and suffer from similar problems in dealing with 
systems with large numbers of degrees of freedom and many non-integrable 
constraints. 

In this paper we present the explicit, general equations of motion for constrained, 
discrete dynamical systems in terms of the generalized coordinates that describe 
their configurations. With the help of these new equations we then formulate a new 
fundamental principle of lagrangian mechanics. 

Consider first an unconstrained, discrete dynamical system whose configuration is 
described by the n generalized coordinates q == [q1, q2, q3, ... , qnF· Its equations of 
motion can be described, using newtonian or lagrangian mechanics, by the relations 

The explicit general equations of motion for constrained discrete dynamical systems 
are obtained. These new equations lead to a simple and new fundamental view of 
lagrangian mechanics. 
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where, the vector, fl.a= q-a, represents the deviation (at the instant of time, t) of 
the constrained generalized acceleration, ij_, from the corresponding unconstrained 
acceleration, a; the error vector, e = b-Aa, represents the extent to ~hich the 
accelerations, at the instant of time t, corresponding to the unconstrained motion do 
not satisfy the constraint equations (3); and, the matrix K1 = M-1K = M-l (AM-l)+. 

In what follows, we shall refer to the matrix K1 as the weighted Moore-Penrose 
generalized inverse of the weighted constraint matrix A. 

The last form of our results lead to the following new fundamental principle of 
lagrangian mechanics : 
Proc. R. Soc. Land. A (1992) 

(5c) 

(5c') or 

3. Equation (5a) can be rewritten after premultiplying by M-1 as, 

ij-a =M-1K(b-Aa), 

(5b) Qc(q, q, t) = K(b-AM-1Q). 

where the matrix K(q, q, t) =Ml (AM-l)+, and the superscript '+ ' denotes the 
Moore-Penrose generalized inverse (Moore 1920; Penrose, 1955) of the matrix, AM-l. 

2. The additional term on the right-hand side of equation (4) which represents the 
generalized force of constraint is explicitly given by 

(5a) 

(5a') 

Mq = Q+K(b-AM-1Q), 

Mq = Q+K(b-Aa), or 

where the additional term, Qc, on the right-hand side arises by virtue of the imposed 
constraints which are proscribed by equations (3). 

We begin by stating our result for the constrained system described above. For 
convenience, we state it in three equivalent forms. 

1. The explicit equations of motion which govern the evolution of the constrained 
system are: 

(4) Mij_ = Q(q, q, t) + Qc(q, q, t), 

where A is a known m x n matrix and bis a known m-vector. Differentiation of the 
usual constraint equations utilized in lagrangian mechanics, which are often in 
pfaffian form, will yield equations of the form (3). These constraint equations 
therefore include, among others, the usual holonomic, non-holonomic, scleronomic, 
rheonomic, catastatic and acatastatic varieties of constraints; combinations of such 
constraints may also be permitted in the equation set (3). We shall refer to the matrix 
A occurring in equation (3) as the constraint matrix. Thus equations (2), which 
describe the unconstrained system, and equations (3), which describe the constraints 
placed on this system, encompass all of lagrangian mechanics, and then some; for, 
the constraints (3) are more general than those that lie within the usual framework 
of lagrangian mechanics (Pars 1965). 

The presence of the constraints (3), imposes additional 'generalized forces of 
constraint' on the system so that the explicit equations of motion of the constrained 
system now take the form 

(3) A(q, q, t) ij_ = b(q, q, t), 

We now assume that the system is subjected tom consistent constraints (which 
need not be linearly independent) of the form 
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where z is again an arbitrary vector. Using equa.tion (9) in equation (7), result (Sa) 
follows because R · R = R and R(AM-l)+ (AM-l) = 0. D 

We are led to marvel at the way Nature works; when the unconstrained motion 
of a system does not satisfy the constraints, Nature modifies the accelerations in a 
manner directly proportional to the extent to which these constraints are not 
satisfied, much like the calculating control theorist. The matrix of proportionality is, 
K1, the weighted Moore-Penrose generalized inverse of the weighted constraint 
matrix. Little did Moore and Penrose realize at the time, that their invention of 
generalized inverses would play such a fundamental role in Nature's design; for, 
it is these seemingly abstract generalized inverses, that provide the key to 
understanding the complex interactions between impressed forces and the con 
straints. 

The equations of motion obtained in this paper appear to be the simplest and most 
comprehensive so far discovered. 

(9) 

be a minim um. 
Since R+ = R, the vector y that minimizes <§is given by 

y = R{Mla-(AM-l)+b}+ (AM-!)+ (AM-!) z, 

(8) 

where y is an arbitrary vector, and R denotes the matrix {J-(AM-l)+ (AM-!)}. We 
determine the vector y by using Gauss's principle, which requires that 

(7) 

is minimized over all ij which satisfy the constraint equations (3). The (unique) 
solution to this constrained minimization problem yields the equations of motion. 

Noting equations (3), and using the substitution r = Mlq, we have, according to the 
theory of generalized inverses, 

(6) <§ = [ij-a(q,q,tWM[ij-a(q,q,t)] 

The motion of a discrete dynamical system subjected to constraints evolves, at each instant 
of time, in such a way that the deviations of its accelerations from those it would have at 
that instant if there were no constraints on it, is directly proportional to the extent to which 
the accelerations corresponding to its unconstrained motion, at that instant, do not satisfy 
the constraints; the matrix of proportionality is the weighted Moore-Penrose generalized 
inverse of the weighted constraint matrix A, and the measure of the dissatisfaction of the 
constraints is provided by the vector e. 

In more mathematical terms, the principle states that at each instant of time, the 
motion of a constrained, discrete dynamical system evolves so that the deviation !ia 
at each instant is directly proportional to e at that instant, the matrix of 
proportionality being K1. 

The derivation of this result is as follows. 
Let us assume that at a given time t, q(t) and q(t) are given. Then, Gauss's principle 

(Gauss 1829; Kalaba & Udwadia 1993) informs us that the accelerations, ij(t), are 
such that the Gaussian function, <§, defined as, 
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